

Error, Confidence & (Un)certainty

Deconstructing Authorship Opinions using a Forced-call Testing Protocol

an Aamlen

R. Brent Ostrum Senior Forensic Document Examiner

Canada Border Agence des services Services Agency frontaliers du Canada

1

Study Purpose

 Conclusion scales have been a topic of discussion for many years in the FDE community

• Primary goals:

- Attempt to validate the conclusion scale explore how it 'works'
- Explore the use of a 'forced-call' decision protocol for signature assessments

'Traditional' Conclusions

• ASTM/SWGDOC: a set of up to 9 'standard' definitions

- 'Levels' intended to reflect <u>confidence</u> of the examiner
- Confidence, in this context, is intended to address concerns about 'potential error' in the conclusion

Study Design

- St2ar S-03 skill-task test
 - 18 specimen, 36 genuine Q, 5 disguise Q, 19 simulations Q

K-08 (18 Specimen)

Kny 7/m

Q-27 (5 Disguise)

No mil 7/xel

Q-02 (19 Simulation)

Q-09 (36 Genuine)

Instructions and 'Forced Call' Procedure

- Two-part process
 - 'Scoring'

Ir	Instructions: 1) Forced call – mark EVERY Q as same or different; one only. 2) Confidence – ALSO mark using vertical bar across line. Intersection point is score.							
Q #	Different	Same	Confidence/Certainty					
1			↑ 0% 100% ↑					
2			↑ 0% 100% ↑					

- Key metrics:
 - Correct vs misleading (ER) calls overall and by signature type
 - Confidence ratings
 - Overall pattern
 - Confidence vs elicited ER
- No formal statistical analyses or comparisons
 - More a test of feasibility and general results
 - Performance of FDE vs laypersons (latter is our baseline)

Test Subjects

- Forensic Document Examiners:
 - CBSA: 9 examiners
 - Training:
 - Several different programs but deemed equivalent
 - Experience:
 - From 3 to 25+ years
 - Certification:
 - Four examiners ABFDE
 - All conduct casework in this area
 - Other: 24 examiners
 - Limited biographic data available

<u>Laypersons</u>:

- CBSA laboratory employees: 14
- Various positions in lab:
 - Admin, Math/data, Chemists/examiner
- Education:
 - College, BSc, MSc, PhD
- Self-rated knowledge of handwriting examination (0-10):
 - 10/14 self-rated 0
 - 2/14 self-rated 1
 - 1/14 self-rated 2
 - 1/14 self-rated 3
 - No observed performance difference by self-rating

'PILOT'

- Many significant limitations in the study
 - Small number of subjects
 - Novel approach for FDE subjects
 - Signature only one Q writer
 - Non-random samples 'convenience' and self-selected
- Other issues
 - Compensation for laypersons none
- Some notes:
 - Numbers shown here may change in any future presentation
 - Still collecting data and statistics will likely change

Hypotheses / Expectations

- Error rate (ER) "elicited miscalls"
 - Protocol should result in higher ER
 - FDE ER < laypersons ER</p>
 - ER will vary by signature type (for both groups)
- Confidence/certainty
 - Expressed uniformly? Any 'preference' or skew?
 - FDE confidence < laypersons confidence
- Relationships and calibration
 - Inverse relationship between Confidence and ER (for FDEs)

Confidence Ratings (proportion used)

■ FDE ■ Laypersons

Confidence Rating vs Miscalls (Individual Q signatures, Forced calls)

Average Confidence versus Error (Overall - all signatures, Forced calls)

Confidence versus Error (Forced)

Summary FDE vs Laypersons

- Laymen are generally much more confident than FDEs
- Laymen are 'always' confident, even when in error
- FDE confidence relationship to error (by type)
 - Overall, there is an inverse relationship
 - Genuine Q show this relationship
 - Disguised and Simulated Q show little, if any, relationship
 - Both Disguised and Simulated Q expressed with low confidence
- FDE ER (forced) is higher than in other studies
- FDE ER is lower than layperson ER (even when forced)

Inconclusive or No Authorship Opinion

- Inconclusive is not an 'authorship' call
 - Reflects 'significant' uncertainty in comparison process
 - Indicates a lack of confidence should any opinion be expressed
 - Perhaps best characterized as an assessment of quality
- Some questions arise:
 - What 'confidence' corresponds to inconclusive state?
 - If we 'eliminate' calls according to confidence, what is the effect?
 - Is the same effect seen for both FDEs and laypersons?

PROTECTION - SERVICE - INTEGRITY

16

CBSA ASFC

Effect of Confidence Rating adjustment vs ER

	OVE	RALL	Genuine Q		Disguised Q		Simulated Q	
	Lay	FDE	Lay	FDE	Lay	FDE	Lay	FDE
0 or >	29.5	16.1	33.2	16.4	66.7	31.1	12.8	(11.7)
1 or >	29.5	11.5	33.2	14.0	66.7	23.5	12.8	10.4
2 or >	29.0	84	32.6	10.4	66.2	21.1	12.9	10.1
3 or >	28.1	5.2	32.0	5.8	66.1	13.3	11.8	7.8
4 or >	27.3	4.9	30.8	5.4	70.9	7.7	11.3	1.5

Cell values = elicited ER when confidence ratings are 'adjusted' by removing calls as per column 1

Forced Call vs 5-step scale

- Essentially, process of calibration
- Identify Q signatures that elicit a specific opinion
 - Using any desired scale (5, 7, 9, etc)
- Determine confidence rating and/or ER through forced call for those Q signatures
 - Complicated since any given Q may fall into different categories
- Expectation:
 - Inverse relationship between ER and Confidence seen earlier should be apparent using the normal scale

The 'Ideal' Relationship (Dummy Data)

- Conclusion scale is expression of examiner 'confidence'
- Ideal relationship between ER and Confidence

'Idealized' relationship

Calibrating the Conclusion Scale

- Specifically 5-level scale used in S-03 (1-5)
- Quasi- ASTM

S-03 conclusions	# Q calls (total 240)	Weighted Confidence (forced calls)	Weighted Error Rate (forced calls)	
Strong assoc. (1)	30	6.2	11%	
Weak assoc. (2)	55	4.1	13%	
Inconclusive (3)	134	3.2	18%	
Weak non-assoc. (4)	18	3.4	10%	
Strong non-assoc. (5)	3	3.5	11%	

Conclusion Category vs Confidence/Error Rate (forced calls)

- Pilot data show the expected form but not perfect
 - Provides limited 'validation' of the scale
 - Potential issue might be use of CBSA-only data
- Shape may be due to restricted data set OR possibly representative of a 'mis-calibration' in the scale
 - More, and expanded, testing is required to sort out
- Valuable use of testing is QA and 're-calibration'

Steps on the Scale

• How many steps or levels are supported? 9?

FDE Average Confidence versus Error (Overall - all signatures, Forced calls)

The main St2ar S-03 Group

- CBSA group was used for above observations
- Can we use the main test group? 24 subjects (excl. CBSA)
- Unfortunately, some 'issues' observed not yet resolved:
 - 8 FDEs expressed no inconclusive '3' calls
 - 1 subject expressed all '1' calls
 - -3 expressed either '1' or '5' (no 2, 3, or 4)
 - 2 expressed '1', '3' or '5' (no 2 or 4)
- No clear pattern emerged for non-CBSA FDE group

Testing vs. the 'Real World'

- Do test results like these help in the 'real world'?
- Generalization of results is very difficult
 - Group vs individual results a lot of between-subject variability
 - No 'control' over participants/subjects
 - Lack of random selection of subjects
 - Limitations in actual test design
 - % of disguised vs simulated signatures
 - Sample 'variation' (or lack thereof) eg. single writer

Practical considerations

- Value of testing is not clear to some
- Interpretation of any derived or estimated ER is difficult
- Testing should be a QA/QC function first and foremost
 In FDE, competency is a serious concern